Indigo Power

Hybrid community batteries:

A feasibility study into 'community power plants'

Power plants today...

...and tomorrow?

Nick Mason-Smith, 29 November 2023

This work is supported by the Australian Commonwealth Regional and Remote Communities

Reliability Fund - Microgrids

Competing objectives

What are we trying to do with neighbourhood batteries?

- 1. Provide local network support services
- 2. Provide energy resilience
- 3. Reduce emissions
- 4. Market participation

What weights are we applying to these objectives?

- → Different priorities lead to different configurations
- → A configuration is on the 'optimal front' if improvements in any one objective come at the expense of other objectives

Yack01

- Small load
- Standalone transformer
- Majority of energy exported in evening
- Participated in Project EDGE

Behind-the-meter? Front-ofmeter?

→ Solar-battery system sized for the connection point – not the load

Community power plants

Project priorities:

1& 2. Emissions reduction and resilience

3. Market participation

4. Network support

Sports stadiums & halls:

- Relief centres
- Low daytime usage
 - Large roofs
- Large electrical connections
 - Standalone transformer
- or sha red LV <mark>network, a dja ce</mark>nt to tra nsform er

Community power plant configurations

Configuration		Resilience	Emissions reduction	Markets	Local network support services
Standalone transformer	7				HV
			V	V	LV Thermal
					LV Voltage
Shared transformer			1	1	HV
		•	•	•	LV Thermal
7					LV Voltage

Retail contracts for CPPs

- On a standard retail contract, CPPs sit idle on cloudy days
 - VPPs reduce asset owner autonomy
 - Wholesale passthrough is uncertain
 - Retailers want reduced market exposure
 - Can everyone get what they want?

Retail contract	Normalised net revenue*
Wholesale passthrough	100%
Α	62%
В	81%
С	79%

- ToUs can be refined further
- → Installing & commercialising a community power plant could be as simple as any other BtM battery

*Yack01 specs, Essential Energy 'LV Small Business Sun Soaker' network tariff, no FCAS. Assumptions in forthcoming report.

Community Power Plants

Aggregated community-scale batteries in North East Victoria

Indigo Power

Thanks!

DC Coupling

	AC Coupled	DC Coupled	
Capacity	200 kW	100 kW	
Normalised net revenue*	100%	97.5%	
Battery eligible for storage-only tariffs	Yes	No	

^{*}Assumptions in forthcoming report.