

MyTown Microgrid

Techno-Economic Feasibility Analysis of Community Batteries in Heyfield, Victoria

2ND ANU 'Future of Neighbourhood Batteries' Conference 2023

29th November 2023

Agenda

- 1. Context
- 2. Economic & technical viability results of large front-of-the-meter and behind-the-meter batteries
- 3. Community direction in progressing community battery & complementary options

Community battery feasibility – cases

	Battery size Economic model	Battery size Tech. model	Business model
Case 1: Front-of-meter (FTM) battery on residential feeder	100kW/ 200 kWh	100 kW	Community owned, retailer operated. Profit (or loss) to community.
Case 2: Fleet of behind-the-meter (BTM) batteries on residential feeder installed at solar PV-households on the same residential feeder.	180 kW/ 198 kWh (60 x 3 kW/ 3.3 kWh)	100 kW	Individually owned and operated. Profit (or loss) to household.
Case 3: Front-of-meter (FTM) battery on mixed commercial/ residential feeder	Didn't include this case	100 kW	Not relevant
Case 4: A BTM battery commercial premise (the pub) with large solar system	2.5kW/ 5 kWh to 50 kW/ 100 kWh	10 kW – 100 kW	Community owned, retailer operated. Profit shared 30% to pub and 70% to community.

Location Options (Now + Future)

Economic viability results

Key assumptions for economic analysis

- Residential and small commercial tariffs: Victorian default offer; feed in tariff for solar 5c/kWh
- Network tariffs: for the FTM battery charging we tested 4 tariffs the standard small commercial in the AusNet area (NAST12), plus the trial battery tariffs offered by Ausgrid, Essential Energy, Powercor/ Citipower.

Battery capital cost:

- FTM battery \$306k, battery cells replacement end of year five \$89k (BTM batteries don't need cell replacement as less cycles)
- BTM battery: \$1,500/ kWh (\$4,950 per household), total cost of fleet \$297k
- **Revenue sources:** FCAS and grid arbitrage
- Project life: 10 years
- **Development costs:** not included for BTM batteries.
- Retailer makes a surcharge of 1c/kWh on battery throughput in the FTM case.

Results – FTM battery with different tariffs & BTM residential

Comparison of FTM 100 kW/2 hour battery on residential feeder (101 customers; 31 with solar, 70 without) with BTM fleet of batteries with the same energy storage on same feeder (60 customers with solar)

BTM batterv at the pub – Results

Economic analysis by stakeholder (10 year project life)

Technical feasibility analysis – overview of results

Case	Voltage characteristics	Hosting capacity	Islanded operation
Case 1: 100 kW FTM battery on residential feeder	Improved; best result from battery located at end of feeder	PV installations could double without a battery, or treble with a battery (from 89 kW to 310 kW)	Not commercially feasible
Case 2: Fleet of BTM batteries on residential feeder (100 kW in total)	Improved somewhat more than FTM	PV installations could increase somewhat more with BTM batteries (to 330 kW).	Not investigated
Case 3: 100 kW FTM battery on mixed residential/ commercial feeder	Improved; best result from battery located at end of feeder	PV installations could increase by 80% without a battery (from 202 kW to 360 kW), or by 170% with the battery (to 560 kW)	Not commercially feasible
Case 4: BTM battery at commercial premises, 10 kW – 100 kW	Assumed same as FTM case if 100 kW	Assumed same as FTM case if 100 kW	Feasible for additional cost of \$4,985 - \$7,514.

MyTown Microgrid | Regional and Remote Communities Reliability Fund - Microgrids

Read our reports

MyTown Microgrid | heyfield (heyfieldcommunity.org.au)

UTS website

www.uts.edu.au/isf/explore-research/projects/mytown-microgridheyfield-victoria/mytown-outputs

