

Challenges & Solutions Associated with High DER DPV contingency & low demand operation 2 March 2021

About AEMO

AEMO Wholesale Electricity Market (WEM)

AEMO National Electricity Market (NEM)

5

AEMO is the independent system and market operator for the **National Electricity Market** (NEM) and the WA **Wholesale Electricity Market** (WEM).

We also operate **retail and wholesale gas** markets across south-eastern Australia and Victoria's gas pipeline grid.

60%

participants

Governments of Australia

Distributed PV Capacity

DPV Contingency

- Many distributed PV systems unintentionally disconnect during voltage disturbances
- Voltage disturbances also cause a load reduction which partially offsets DPV disconnection
- Volume of DPV disconnection can exceed amount of load reduction, leading to a net reduction in supply (the "DPV contingency")
- DPV contingency may coincide with the loss of a large generating unit
- Largest credible contingency is growing in some regions

DPV Contingency

Region	Influential Fault Locations	Disconnection of regional DPV	Disconnection of regional load
SA	Adelaide metropolitan 275kV network (eg. Pelican Point, Torrens Island)	39-43 %	14-25 %
QLD	Brisbane metropolitan 275 kV network, or Tarong, Tarong North, Swanbank E	32-36 %	9-16 %
QLD	Wivenhoe	30-33 %	9-15 %
VIC	Loy Yang A or B	40-45 %	12-22 %
VIC	Loy Yang A or B with de-energisation of Hazelwood – South Morang Line 1	35-38 %	12-22 %
VIC	Melbourne metropolitan 500 kV network (Sydenham – South Morang)	43-47 %	12-21 %
NSW	Sydney metropolitan 330 kV network, or Liddell, Vales Point	19-24 %	8-17%

DPV Contingency

 DPV generation equal to 78% of underlying demand

• Possible DPV contingency ~200MW

Low Demand

Low Demand Challenges

- Voltage management low demand results in reduced flows on transmission lines
- System strength generating units required for system strength have minimum generation levels
- Frequency control generating units required for inertia and frequency control have minimum generation levels
- Emergency frequency control schemes Underfrequency load shedding

Low Demand Thresholds – SA

Low Demand Thresholds – VIC

Low Demand Thresholds – QLD

Low Demand Thresholds – NSW

Solutions and Opportunities

- Disturbance ride-through capabilities AS 4777.2:2020
- Emergency DPV shedding capabilities to disconnect DPV during rare, severe operational conditions
- Frequency control to manage growing DPV contingency sizes
- Load shifting DBESS or flexible loads can 'soak up' excess DPV generation

Further information

2020 Electricity Statement of Opportunities

AEMO

August 2020 A report for the National Electricity Market

Minimum operational demand thresholds in South Australia

May 2020

Technical Report Advice prepared for the Government of South Australia

• Chapter 7, <u>2020 ESOO</u>

 <u>Technical Report</u> for Government of South Australia

• <u>AEMO's DER Program</u>

Challenges & solutions associated with high DER

Under Frequency Load Shedding (UFLS) in South Australia 2 March 2021

What is UFLS?

Normal UFLS operation:

What is UFLS?

Normal UFLS operation:

What is UFLS?

Normal UFLS operation:

Reverse flows on UFLS feeders

Reverse flows on UFLS feeders

Reverse flows on UFLS feeders

UFLS during an emergency event

Generation loss = 620 MW, DPV generation = 400 MW, system inertia = 5,023 MWs, UFLS load = 620 MW

Case study: Impacts of DPV on UFLS

Generation loss = 200 MW, DPV generation = 1,600 MW, system inertia = 6,280 MWs, UFLS load = 345 MW

Risk mitigation -Loss of Interconnector

UFLS is the last line of defence for severe and unexpected power system events, such as interconnector loss

24

Risk mitigation – Other conditions

UFLS is increasingly important as more new and untested operation zones emerge in SA

- Increasing load on UFLS
- Dynamic arming of UFLS feeders in reverse flow
- Updating frameworks possible EFCS rule change proposal
- Fast active power response and granular load shedding may also supplement and restore UFLS capabilities

Modelling DER impacts on UFLS

Model the loss of Heywood in a single mass model representation of the SA network, using:

- Net load on UFLS trip frequency bands from SAPN
- DPV modelling
 - Under frequency trip behaviour based on AEMO's 2016 survey of manufacturer settings
 - DPV installed capacity based on AEMO forecasts from the 2020 ISP and ESOO
- Various levels of fast active power response from SA's large batteries
- Dispatch scenarios based on strategic bidding from AEMO market models

• % of year where we see risks

Outputs

Inputs

 Risk mitigation strategies – constraint on interconnector flows into SA

Model of DER impacts on UFLS

