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Energy hubs
• No electricity grid connection.
• Gas supply (possibly from local storage tank).
• Renewable sources (wind, solar PV).
• Battery and hydrogen storage.
• Electrical and heat load.
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Objective
• Determine the minimum cost energy-hub capacity design while 

ensuring electrical and heat loads are satisfied with high probability.
– Taking into account uncertainty in renewable generation (wind and solar) and 

loads, and flexibility in storage.
– Wind generation: 
– where       is a normalized random scenario,
– where       is the wind turbine capacity.
– Similarly for solar PV.
– Load      is not normalized.

• Capacity design can be formulated as a chance-constrained
problem:

– are the random variables: renewable generation and load.
– are the decision variables: component capacities.
– is a pre-defined maximal probability of violation.
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Chance-constrained optimization
• Uncertainty in generation and load results in 

stochastic constraints:
– Power balance/sufficiency.
– Battery charging/discharging (through a control policy 

that is dependent upon the stochastic variables).
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• There are also a variety of deterministic constraints and non-
negativity constraints.

• The objective function is composed of the net present cost of all 
the devices that form the energy hub.

• This is a difficult problem to solve due to non-convexity.
– Integer variables describe battery charging/discharging complementarity.



Robust reformulation
• The chance-constrained problem can be solved through a robust 

reformulation.
• This reformulation is based on a new chance-constrained problem:

• which is used to construct a hyper-rectangular robust set
• for the random vector.

– This new problem is solved using a scenario approach.

• A robust counterpart of the original chance-constrained problem 
confines the random vector to               ,

• This can, however, give quite conservative results.
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Robust set reshaping: cutting
• The process of constructing the hyper-rectangle can capture 

highly unlikely possibilities.
– Example: low renewable generation plus high load all day.

• Introduce hyperplanes to trim the unrealistic corners of the 
hyper-rectangle.
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Robust set reshaping: PCA
• Principal component analysis provides a coordinate transformation.
• Introduce two hyperplanes for each principal component.
• The intersection of the original and new hyper-rectangles gives a 

much smaller (polytopic) robust set.
• All the data points are still enclosed.
• Less conservative.
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Tractable linear program
• Battery dispatch is governed by an affine control policy.
• This enables the charge/discharge complementarity condition to 

be reformulated.
• The result is a robust linear program (LP) with polytopic

uncertainty set.
• This robust LP can be converted to a regular LP by taking the 

dual.
– Computationally tractable problem.

• The solution may, however, still be quite conservative.
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Iterative design method
• An iterative method is used to address conservativeness of the 

chance-constrained problem.
• The (scalar) maximum load shedding parameter       is used to bridge 

between the chance-constrained and validation sub-problems.
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Parameterization of the CC problem
• Load shedding       parameterizes the chance-constrained 

problem.
– Decreasing       tightens the problem, increases design conservativeness.
– Increasing       relaxes the problem, decreases design conservativeness.
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Convergence
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Optimal Design

Design peak load is 100kW



Actual load shedding outcome
• The validation phase ensures feasibility of 100 of the 1000 scenarios.

– Ensures the true load shedding limit (25% for our example) is not exceeded.

• A posteriori evaluation of all 1000 scenarios indicated that 7 failed to 
satisfy the load-shedding limit.

– This corresponds to an upper bound on the violation probability of            %.
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Energy hub operation
• A two-level operating scheme has been adopted.

– Upper level: day-ahead optimal scheduling.
– Lower level: real-time model predictive control (MPC).

• Real-time realizations of renewable generation and load differ 
from their day-ahead forecast.

– MPC seeks to track the reference trajectories for battery state of charge and 
hydrogen storage provided by the day-ahead schedule, while minimizing 
load shedding.

13/15

This two-level operating 
strategy has been 
extended to networked 
energy hubs.



Example
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Renewable generation and load 
(scenario)



Conclusions
• Energy hubs incorporate multiple energy carriers.

– Example: electricity, gas, heat, hydrogen.
– They form the building blocks for community-based energy grids.

• Capacity design of autonomous energy hubs must take into 
account the stochasticity of renewable generation and load.

– This results in a chance-constrained optimization problem.

• An affine policy for battery dispatch allows a robust 
reformulation of the chance-constrained problem to be 
expressed as a tractable linear program.

– This may give quite conservative results.

• Conservativeness can be addressed through iteration between 
the robust problem and a validation problem.

• Economic operation of an autonomous energy hub can be 
achieved using a two-level control structure.

• This two-level operating strategy extends to networks of energy 
hubs.
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